
1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

1

PVD-FL: A Privacy-Preserving and Verifiable
Decentralized Federated Learning Framework

Jiaqi Zhao , Hui Zhu , Senior Member, IEEE, Fengwei Wang , Rongxing Lu , Fellow, IEEE,
Zhe Liu , Senior Member, IEEE, and Hui Li

Abstract—Over the past years, the increasingly severe data is-
land problem has spawned an emerging distributed deep learning
framework—federated learning, in which the global model can be
constructed over multiple participants without directly sharing
their raw data. Despite its promising prospect, there are still
many security challenges in federated learning, such as privacy
preservation and integrity verification. Furthermore, federated
learning is usually performed with the assistance of a center,
which is prone to cause trust worries and communicational
bottlenecks. To tackle these challenges, in this paper, we pro-
pose a privacy-preserving and verifiable decentralized federated
learning framework, named PVD-FL, which can achieve secure
deep learning model training under a decentralized architecture.
Specifically, we first design an efficient and verifiable cipher-based
matrix multiplication (EVCM) algorithm to execute the most
basic calculation in deep learning. Then, by employing EVCM, we
design a suite of decentralized algorithms to construct the PVD-
FL framework, which ensures the confidentiality of both global
model and local update and the verification of every training
step. Detailed security analysis shows that PVD-FL can well
protect privacy against various inference attacks and guarantee
training integrity. In addition, the extensive experiments on real-
world datasets also demonstrate that PVD-FL can achieve lossless
accuracy and practical performance.

Index Terms—Federated learning, privacy-preserving, verifica-
tion, decentralized, efficiency.

I. INTRODUCTION

DRIVEN by the explosive growth of computational capa-
bility and data volume, deep learning (DL) [1] technique

has been widely penetrated into all aspects of society, such as
finance, healthcare, and transportation, and changed people’s
lifestyles significantly. Generally, the DL model quality ben-
efits from large-scale fusion data. Unfortunately, due to the
increasing privacy awareness, coupled with the introduction
of some strict privacy laws (such as the General Data Pro-
tection Regulation (GDPR) [2] and the California Consumer
Privacy Act (CCPA) [3]), it is severe to achieve data sharing
over multiple institutions, which makes massive precious data

This work was supported by National Key R&D Program of
China (2021YFB3101300), National Natural Science Foundation of China
(61972304 and 61932015), Science Foundation of the Ministry of Education
(MCM20200101), and Shaanxi Provincial Key Research and Development
Program (2020ZDLGY08-04). (Corresponding author: Hui Zhu.)

Jiaqi Zhao, Hui Zhu, Fengwei Wang, and Hui Li are with the
School of Cyber Engineering, Xidian University, Xi’an, Shaanxi,
China (e-mail: jq zhao@stu.xidian.edu.cn, zhuhui@xidian.edu.cn,
wangfengwei@xidian.edu.cn, and lihui@mail.xidian.edu.cn).

Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: rlu1@unb.ca).

Zhe Liu is with the College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing, Jiangsu, China (e-mail:
zhe.liu@nuaa.edu.cn).

Local
Update

Global
Model

Bank

Enterprise

School

Center

Hospital

Bank

Enterprise

School

Hospital
Local

Update

(a) Centralized FL (b) Decentralized FL

Fig. 1. The architectures of federated learning. (a) Centralized FL where a
center connects with all participants. (b) Decentralized FL where participants
connect with each other.

isolated as the form of data islands. Consequently, the state-
of-the-art concept of federated learning (FL) [4] is introduced
by Google, as shown in Fig. 1, where the global DL model
can be constructed over multiple participants only through
exchanging the global model and local update.

Nevertheless, there are still many challenges in FL. First,
privacy concerns exist in FL since both the global model
and local update may also reveal the data information [5].
On the one hand, the raw data can be recovered accurately
via observing the local updates in just a few rounds [6], [7].
On the other hand, through exploiting the difference between
consecutive global models, which is equivalent to the aggre-
gation of local updates an adversary participant can also infer
the data property and membership in a certain training round
[8], which threatens users’ privacy considerably. Second, the
training integrity is always overlooked in FL. For example, a
“lazy” participant or center may execute the stipulated protocol
incompletely due to its limited computation resources, which
will cause a model accuracy drop. Moreover, in centralized
FL, it is hard to judge whether a center is trustworthy and
to find one trusted by all participants. Meanwhile, since the
complete global model is transferred between the center and all
participants at every training round, the center’s communica-
tion ability may also become the system bottleneck. Therefore,
it is urgent and profound to design a privacy-preserving
and verifiable decentralized FL framework, which can well
guarantee data privacy (containing the protection of global
model and local update) and training integrity, meanwhile,
can alleviate the trust worries and communicational bottleneck
caused by a center.

Aiming at tackling the above challenges, plenty of secure

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1604-1953
https://orcid.org/0000-0002-5853-633X
https://orcid.org/0000-0002-6886-8258
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-8578-2635
https://orcid.org/0000-0001-8310-7169

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

2

FL schemes have been proposed. Based on secret sharing or
homomorphic encryption, many secure aggregation algorithms
[9]–[12] are proposed and used to ensure the confidentiality
of local updates, but the global model is still leaked in these
schemes. Differential privacy-based schemes can hide the data
information of a single participant via adding random noises
into the local updates [13]–[16], but its privacy guarantee will
cause a trade-off of model accuracy drop. Secure multi-party
computation (MPC) technique can also be used to resolve
the privacy problems in FL [17]–[20], but it only supports
model training with a limited number of participants and
will bring unacceptable communication overhead. Moreover,
a few works [21]–[23] start focusing on the verification of
model aggregation by using a homomorphic hash function or
Lagrange interpolation, and some decentralized FL schemes
[24]–[26] are also proposed recently, but as far as we know,
there is no work considering both of them.

In this paper, we propose a privacy-preserving and verifiable
decentralized FL framework, namely PVD-FL, through which
the global DL model can be constructed securely over multiple
participants without the assistance of a center. Specifically,
based on a lightweight symmetric homomorphic encryption
SHE, we propose an efficient and verifiable cipher-based
matrix multiplication (EVCM) algorithm to ensure training
security. Then, a suite of decentralized algorithms is carefully
designed for achieving high-accuracy decentralized model
training. Specifically, the main contributions of this paper are
three-fold as follows.
• First, PVD-FL guarantees the security of model training

process. Benefiting from our proposed EVCM algorithm, both
the local update and global model are kept confidential during
the whole training process, which can strictly protect data
privacy. Meanwhile, every training step of PVD-FL is verifi-
able, thus ensuring the training integrity. Specifically, EVCM
first uses complement to give consideration to both signed
ciphertext packing and calculation. Moreover, the random
numbers are added to every ciphertext packing for supporting
verifiable calculations.
• Second, PVD-FL achieves high-accuracy DL model train-

ing under a decentralized architecture. Through carefully
utilizing EVCM, we design a suite of decentralized algorithms
containing model initialization, model propagation, and model
updating. Based on them, in PVD-FL, the global model can be
constructed over multiple connected participants without the
assistance of a center. Moreover, all calculations in PVD-FL
will not cause a model accuracy drop.
• Third, PVD-FL is efficient in computational cost and

communication overhead. In PVD-FL, the global model and
local update are both encrypted with the lightweight SHE
technique, and the ciphertext calculations can be executed in
parallel, which reduce the overhead significantly. The exten-
sive experimental results demonstrate that PVD-FL achieves
the same high accuracy as centralized training, in addition,
is computation and communication efficient on real-world
datasets.

The rest of this paper is organized as follows. In Section II,
we define the system model, security requirements, and design
goals. In Section III, we outline some building blocks of PVD-

System initialization

Iterative model training

Training completed

Encrypted Verifiable

P0

P2 P1

① Partial Model

Fig. 2. System model under consideration (N = 3).

FL. Section IV introduces PVD-FL detailedly, followed by the
security analysis and performance evaluation in Section V and
Section VI. Finally, we review the related work in Section VII
and draw a conclusion in Section VIII.

II. MODELS, SECURITY REQUIREMENTS, AND DESIGN
GOALS

In this section, we formally describe our system model and
security model, then identify our design goals.

A. System Model

In our system model, we mainly focus on how to train a DL
model over multiple connected participants. Thus our system
only consists of multiple participants {P0,P1, · · · ,PN−1},
each equipped with a computer or workstation and can connect
with others, as shown in Fig. 2.

Each participant Pn ∈ {P0,P1, · · · ,PN−1} is an institution
(e.g., bank, hospital, etc.) with powerful storage and computing
capability, and their training data are assumed independent
and identically distributed (i.i.d.). Specifically, all participants
first initialize a ciphertext global model via parameter es-
tablishment, key generation, and partial model aggregation.
Then, at each training round, every Pn executes cipher-based
forward and backward propagations with the collaboration of
others. After that, the ciphertext local updates are calculated
and shared for updating the ciphertext global model. Finally,
the global model converges after multiple training rounds, and
the converged model is transferred and decrypted.

B. Threat Model and Security Requirements

In our threat model, all participants are considered honest-
but-curious [27], i.e., each Pn is obliged to execute the
stipulated protocol process honestly, but tries to independently

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

3

infer other participants’ sensitive information as much as
possible. Specifically, an honest-but-curious participant may
try to infer other participants’ local training data from the
received global model and local update. Since there are
commonly conflicts of interest between different participating
institutions, the participants are considered non-colluding. In
addition, we assume participants may execute incomplete or
incorrect calculations due to their limited computing resources
or equipment failures during iterative model training. It is
worth noting that there may be some other active attacks
(e.g., poisoning attack, evasion attack, etc.) in FL. Since PVD-
FL focuses on protecting the training data of participants
and verifies the miscalculation during model training, these
attacks are currently out of the scope of this paper and will
be considered in future work. Under these threat assumptions,
the following security requirements should be satisfied.
• Privacy. First, the raw local training data involves users’

privacy directly. Moreover, in FL, the global model and
local update also contain massive sensitive data information.
Therefore, PVD-FL should protect not only the raw local
training data, but also the intermediate parameters during
model training.
• Verification. During each training round, limited by local

computing resources, a participant may execute the protocol
calculations incompletely, which will affect the normal model
training. Meanwhile, there may be some calculation errors due
to equipment failures, which will also cause wrong training
results. Therefore, PVD-FL should have the ability to verify
the miscalculations and ensure the training integrity.

Moreover, it is noteworthy that these two types of miscal-
culation are essentially different from the poisoning attacks.
The purpose of poisoning attacks is to maliciously destroy the
model training, but that of the incomplete or incorrect calcu-
lations is to normally participate in the model training even
though the computing resources are limited or the computing
equipment is error-prone.

C. Design Goals

Under the system and threat models mentioned above, aim-
ing to achieve privacy-preserving and verifiable decentralized
federated learning, PVD-FL should satisfy the following three
objectives.
• Guarantee the security during the whole model training

process. There is massive sensitive information in users’ data
(e.g., electronic healthcare records, location trajectory, etc.),
once leaked, it will cause a serious threat to user privacy or
even a violation of relevant privacy laws. Moreover, partici-
pants’ incomplete or wrong calculations will greatly affect the
model training effect. Therefore, our proposed PVD-FL should
guarantee privacy-preserving and integrity of model training.
• Achieve high-accuracy decentralized training for DL

model over multiple participants. In FL, the global model is
usually trained in a centralized way, i.e., the global model
and local update are exchanged between a server and many
participants at every training round, where the communication
capability of the server becomes the main factor limiting
the model training efficiency. Therefore, without an accuracy

drop, we consider the decentralized model training via the
collaboration of just multiple participants in PVD-FL.
• Low computation and communication overhead. In recent

years, the explosive growth of computational and communi-
cational capabilities has brought about the rapid development
of DL technology, which is applied to all aspects of people’s
daily life. Nevertheless, most privacy-preserving DL schemes
will cause at least two orders of magnitude overhead than
origin schemes, since the sensitive data are always protected
by the less efficient cryptography methods, e.g., encryption.
Therefore, the proposed protocol in PVD-FL should be care-
fully designed for accomplishing high efficiency in terms of
computation and communication.

III. PRELIMINARIES

A. Deep Learning

Deep learning [28], [29] is a new research direction in
machine learning, whose motivation is to build a deep neural
network (DNN) model that can simulate the human brain
for making decisions. A DNN model consists of an input
layer, several hidden layers (containing fully-connected (FC),
convolutional (Cov), and pooling layers), and an output layer.
In supervised DL, a data sample contains its feature x and label
y, and the loss function ζ is used to measure the difference
between the labels and predicted outputs. For minimizing ζ, a
DNN model is trained by iteratively performing the following
phases [30].

1) Forward Propagation: First, given a random data batch
X as input a0, output aL is obtained as follows, where X
contains β data samples, and L denotes the layer depth.
• Cov Layer. The Cov layer is used to extract the data

features via multiple small dl × dl convolutional kernels. The
input can be represented as al−1 ∈ Rβ×wl−1×hl−1×cl−1 , where
wl−1, hl−1, and cl−1 denote the width, height, and channel
number respectively. Let W l ∈ Rdl×dl×cl−1×cl denotes the
multiple convolutional kernels, the output al ∈ Rβ×wl×hl×cl

can be calculated as al = σ(zl) = σ(al−1 ∗W l + bl), where
∗ denotes the convolutional operation, bl ∈ Rwl×hl×cl is the
bias unit, σ(·) denotes the activation function (such as Sigmoid
and ReLU), and al satisfies wl = ⌈(wl−1 − dl + 1)/sl⌉ and
hl = ⌈(hl−1 − dl + 1)/sl⌉.
• FC Layer. In FC layers, every entry of al−1 ∈ Rhl−1

is connected to the output al ∈ Rhl via the weight matrix
W l ∈ Rhl−1×hl . Given al−1, the output al of FC layer can be
calculated as al = σ(zl) = σ(al−1W l + bl).
• Pooling Layer. Analogous to the Cov layer, the pooling

layer calculates the max or average value of every region as
its output, which can be represented as ρ(al).

After obtaining output aL, the loss value is calculated as
loss = ζ(aL, Y), and ζ may be the cross-entropy error
function, mean square error function, and so on. After that, the
derivative of the L-th layer can be calculated as δL = ∂loss

∂aL .
2) Backward Propagation: The backward propagation first

calculates the derivative δl as follows.
• Cov Layer: δl = δl+1 ∗ rot(W l+1)⊙ σ′(zl),
• FC Layer: δl = δl+1[W l+1]T ⊙ σ′(zl),
• Pooling Layer: δl = upsample(δl+1)⊙ σ′(zl),

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

4

where ⊙ is the Hadamard product, rot(W l) will rotate each
convolutional kernel by 180 degrees, i.e., first reverse it up and
down, then reverse it left and right, and upsample(δl+1) will
recover δl+1 to the size before pooling.

After that, the gradients Gl
W and Gl

b can be calculated as:
• Cov Layer: Gl

W = [al−1]T δl, Gl
b =

∑
δl,

• FC Layer: Gl
W = al−1 ∗ δl, Gl

b =
∑

δl.
3) Model Updating: After the backward propagation, W

and b are updated as W l = W l− α
β ·G

l
W and bl = bl− α

β ·G
l
b,

where α is the learning rate.
Moreover, since the convolutional operation cannot be di-

rectly calculated over ciphertexts, in PVD-FL, it is transferred
to linear matrix multiplication based on the method proposed
in [31]. Specifically, each input al−1 will be flattened to a
matrix ãl−1 ∈ Rwlhl×d2

l cl−1 , which is written as ãl−1 ←
flattenX(al−1). And the convolutional kernel W l will be
flattened to W̃ l ∈ Rd2

l cl−1×cl as W̃ l ← flattenW(W l). After
that, the convolutional result can be obtain by al−1 ∗W l =
clusterX(ãl−1W̃ l), where function clusterX can cluster the
wlhl × cl matrix to a wl × hl × cl matrix as the output of the
current layer.

B. The SHE Technique

The symmetric homomorphic encryption technique named
SHE [32] can compute homomorphic addition and multipli-
cation efficiently, which is IND-CPA secure [33], [34] and
contains three functions written as SHEKeyGen,SHEEnc,
and SHEDec.
• SHEKeyGen(k0, k1, k2) → (pp, key). Given security

parameters (k0, k1, k2) satisfying k1 < k2 < k0 (denoting the
plaintext, random, and key space respectively), first choose
two k0-bit prime numbers p, q, and calculate N = pq. Then,
select a k2-bit random number L. Finally, output the secret
key key = (p,L) and public parameter pp = (k0, k1, k2,N).
• SHEEnc(key,m) → JmK. Given key and a k1-bit

message m, the cipher JmK is calculated as JmK = (rL +
m)(1 + r′p) mod N , where r and r′ are k2-bit and k0-bit
random numbers.
• SHEDec(key, JmK)→ m. Given key, ciphertext JmK can

be decrypted as m = (JmK mod p) mod L.
Given two ciphertexts Jm1K, Jm2K, and a plaintext m3,

the SHE technique supports the homomorphic calculations as
Jm1K ⊕ Jm2K = Jm1 + m2K, Jm1K ⊕ m3 = Jm1 + m3K,
Jm1K ⊗ Jm2K = Jm1m2K, and Jm1K ⊗ m3 = Jm1m3K,
where ⊕ and ⊗ represent the homomorphic addition and
multiplication respectively. Moreover, the SHE technique can
calculate almost unlimited ciphertext additions and ⌊ k0

2k2
− 1⌋

ciphertext multiplications.

C. The SIMD Technique

The Single Instruction Multiple Data (SIMD) technique
[35], [36] can be used in encryption to partition the entire
plaintext space into multiple plaintext slots, which allows
encrypting multiple plaintexts into one ciphertext. Moreover,
the SIMD ciphertext can execute homomorphic operations in
parallel. As shown in Fig. 3, a plaintext slot is 4-bit and
the vector addition can be calculated over ciphertexts just by

 4[3 7···

7[5 8···

0 ···01 0 0 10 1 0 11 1

0 ···11 1 0 11 0 1 00 0

]

]

11[8 15···]

1 ···10 1 1 00 0 1 11 1

Fig. 3. An example of the SIMD technique.

one homomorphic addition. The SIMD technique is used as a
building block to construct our EVCM algorithm, which will
be introduced in Section IV-A.

IV. PROPOSED SCHEME

In this section, we first introduce an efficient and verifiable
cipher-based matrix multiplication algorithm named EVCM.
Then, by utilizing EVCM, a suite of cipher-based algorithms
are carefully designed, which are used to construct the privacy-
preserving and verifiable decentralized FL framework PVD-
FL.

A. EVCM Algorithm

Based on the SHE and SIMD techniques, the EVCM
algorithm is proposed, which can calculate cipher-based matrix
multiplication efficiently and verifiably over ciphertexts. In this
algorithm, by converting the matrix element to its complement,
signed calculations can be executed over ciphertext packing.
Moreover, the random numbers are added to every ciphertext
packing for verifying the calculation correctness. As shown
in Fig. 4, the matrix multiplication of A ∈ ZW×U and
B ∈ ZU×V is calculated with nine EVCM functions, namely
KGen, PGen, Sign, Pack, Enc, Mul, Dec, Unpack, and Ver,
which are introduced detailedly in the following.
• KGen(k0, k1, k2)→ (pk, sk) : Given the security param-

eters of SHE, first execute SHEKeyGen(k0, k1, k2) to obtain
key as the private key sk of EVCM. Then, encrypt two zero
values with SHEEnc, and the public key of EVCM is written
as pk = (J0K0, J0K1).
• PGen(L0, k1) → PP : Given the bit length L0 of each

element in matrices A and B, the bit length of elements in C is
first set to L1 satisfying L1 > 2L0+log(U)−1. Then, the bit
length of each plaintext slot is set as L2 satisfying L2 > 4L0+
3 log(U) − 3. After that, according to the security parameter
k1 of SHE, the number of plaintext slots is determined as
Ns, which satisfies L2 ·Ns < k1. Finally, {Ns, L0, L1, L2} is
written as the public parameter PP .
• Sign(B,SV, PP) → B′ : For verification, first generate

multiple U -dimension random vectors sv0, sv1, · · · , svNp−1

as signature vectors where each element x ∈ svn satisfies
x ∈ (−2L0−1, 0) ∪ (0, 2L0−1) and Np = ⌈ V

Ns−1⌉. Then,
insert SV = (sv0, sv1, · · · , svNp−1) into B for every Ns − 1
column to obtain B′.
• Pack(B′, PP) → ⟨B̂′⟩ : For each element bu,v ∈

(−2L0−1, 2L0−1) in matrix B′, it is first encoded into its L1-
bit complement form, written as b̂u,v . After that, the signed
number bu,v is transferred into a positive integer, which can
be packed and encrypted directly. Then, similar to the SIMD
technique introduced in Section III-C, for each row u in

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

5

3·20+1·212+123·224 65·20+5·212+63·224

125·20+1·212+3844·224

1

0

1 3

0 2 1

1

0

1 1

62

61

1 7

0 6

4

9

3 1 1 5

1 1 3 3

2 0 2 1

SVSV

VV VV

e2

 Successful verification

Sign

Pack, Enc

MulMul

Dec, Unpack

VerVer

1 4

0 9

'B

ˆ 'B
ˆ 'A

3847·20+127·212+124·224

122·20+0·212+3721·224 3782·20+122·212+61·224

1·20+1·212+62·224 3·20+3·212+62·224

62·20+2·212+1·2242·20+0·212+61·224

ˆ 'C

,C VV

B

A

C

-1 -4

-6 -3

-2

-3

-2 -2

-3

-2 -2

-2-3

-3

-3-6-6

-5

-1 -4

-1

1+2 = 3
3+(-2) = 1

Fig. 4. An example of the EVCM algorithm (L0 = 3, L1 = 6, L2 =
12, Ns = 3).

complement matrix B̂′, Ns elements are packed into one
plaintext ⟨b̂⟩u,s by computing

⟨b̂⟩u,s =
Ns−1∑
i=0

b̂u,sNs+i · 2iL2 . (1)

It is noteworthy that the element number in the last packing
may be less than Ns if V +Np is not divisible by Ns.
• Enc(⟨B̂′⟩, pk)→ J⟨B̂′⟩K : Each element ⟨b̂⟩u,s in matrix
⟨B̂′⟩ is encrypted with pk as

J⟨b̂⟩u,sK = ⟨b̂⟩u,s ⊕ (r0 ⊗ J0K0)⊕ (r1 ⊗ J0K1), (2)

where r0 and r1 are two k2-bit random numbers. Then, the
ciphertext packed matrix is written as J⟨B̂′⟩K.
• Mul(A, J⟨B̂′⟩K, PP) → J⟨Ĉ ′⟩K : First, a vector eW

of all ones is added into the last row of A to obtain A′.
Similarly, each element aw,u ∈ (−2L0−1, 2L0−1) in matrix
A′ is then encoded as its L1-bit complement âw,u. After that,
each ciphertext element J⟨ĉ⟩w,sK ∈ J⟨Ĉ ′⟩Kis calculated as

J⟨ĉ⟩w,sK =
U−1⊕
i=0

âw,i � J⟨b̂⟩i,sK. (3)

• Dec(J⟨Ĉ ′⟩K, sk) → ⟨Ĉ ′⟩: Elements in J⟨Ĉ ′⟩K are de-
crypted with SHEDec to obtain the decrypted matrix ⟨Ĉ ′⟩.
• Unpack(⟨Ĉ ′⟩, PP) → (C, V V) : First, each element
⟨ĉ⟩w,s is unpacked with Algorithm 1. After that, we obtain
a complement matrix Ĉ ∈ ZW×V and a complement vector
V̂ V ∈ ZN . Finally, every complement ĉw,v or v̂vs is decoded
into its true form, which forms the final matrix product C and
verification vector V V .
• Ver(SV, V V) → b : For all s = 0, 1, · · · , Np − 1, if

vvs = Σsvs, the matrix product C is considered correct and
b is set to 0. If else, b is set to 1.

Algorithm 1 Unpack
1: for j = Ns − 1, Ns − 2, · · · , 1 do
2: ĉw,s(Ns−1)+j−1 = ⟨ĉ⟩w,s//2jL2 .
3: ⟨ĉ⟩w,s = ⟨ĉ⟩w,s − ĉw,s(Ns−1)+j−1 · 2jL2 .
4: if w = W then
5: v̂vs = ⟨ĉ⟩w,s.

Correctness. Each element cw,v ∈ C can be calculated
correctly, i.e., cw,v =

∑U−1
i=0 aw,ibi,v .

Proof. According to the homomorphic properties of SHE,
Equation (3) can be deduced as:

J⟨ĉ⟩w,sK =
U−1⊕
i=0

âw,i � J⟨b̂⟩i,sK = J
U−1∑
i=0

âw,i⟨b̂⟩i,sK.

Since L2 · Ns < k1, the bit length of ⟨ĉ⟩ will not exceed
the plaintext space and J⟨ĉ⟩w,sK can be decrypted correctly.
According to Equation (1), ⟨ĉ⟩w,s can be represented as

⟨ĉ⟩w,s =
U−1∑
i=0

(

Ns−1∑
j=0

âw,i · b̂i,sNs+j · 2jL2)

=

Ns−1∑
j=0

(
U−1∑
i=0

âw,i · b̂i,sNs+j) · 2jL2 .

According to L2 > 4L0 + 3 log(U) − 3 and L1 >
2L0 + log(U) − 1, we can obtain L2 > 2L1 + log(U) − 1.
Meanwhile, since ĉw,s(Ns−1)+j−1 =

∑U−1
i=0 âw,i · b̂i,sNs+j

and âw,i, b̂i,sNs+j are L1-bit complements, the plaintext slot
is larger than the space of ĉw,s(Ns−1)+j−1. Therefore, every
element ĉw,s(Ns−1)+j−1 can be recovered from its plaintext
slot with Algorithm 1.

Then, according to L1 > 2L0 + log(U) − 1 and
aw,u, bu,v ∈ (−2L0−1, 2L0−1), i.e., cw,s(Ns−1)+j−1 < 2L1 ,
ĉw,s(Ns−1)+j−1 can be decoded correctly into its true form
cw,s(Ns−1)+j−1 = aw,i · bi,s(Ns−1)+j−1.

Finally, the column index of C is rewritten as v =
s(Ns − 1) + j − 1, and cw,v can be represented as cw,v =∑U−1

i=0 aw,ibi,v .
Therefore, cw,v ∈ C is calculated correctly as cw,v =∑U−1
i=0 aw,ibi,v .

B. Description of PVD-FL framework

The proposed PVD-FL mainly contains four phases: 1)
System initialization; 2) Cipher-based model propagation; 3)
Cipher-based model updating; 4) Training completed. The

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

6

TABLE I
NOTATIONS OF PVD-FL

Notations Definition
N The number of participants.
k0, k1, k2 Security parameters of SHE.
α, β Learning rate and batch size.
hl, dl, cl The size of l-th layer.
ρ, ζ, σ Pooling, loss, and activation functions.
W l, bl The global model of the l-th layer.
L0 Precision parameter.
κ Expansion factor.
PP Public parameter.
fpkn, fskn EVCM key pair for forward propagation.
bpkn, bskn EVCM key pair for backward propagation.
M l

n, p
l
n The partial model of the l-th layer.

SV,ZV Random signature vector and zero vector.
zl The output of the l-th layer.
al The l-th output after activation function.
δl The derivative of the l-th layer.
Gl

W , Gl
b The local update of the l-th layer.

⟨X⟩ Packed X .
JXKi Ciphertext X encrypted with fpkn or bpkn.

overview of PVD-FL is shown in Fig. 5. Specifically, in
system initialization, the common ciphertext global model
is first generated and distributed among every participant,
which is invisible to any participant. Then, based on the
EVCM algorithm, all participants can collaboratively perform
forward and backward propagations over the ciphertext global
model, and obtain the derivative of every layer. After that,
the ciphertext derivatives are used to calculate ciphertext local
updates, which are sent to every participant for updating their
ciphertext global model locally. Finally, through multi-round
model training (containing model propagation and updating),
the global model is judged to converge, and then is trans-
ferred and decrypted by every participant. Moreover, the used
notations are listed in TABLE I for describing PVD-FL more
clearly.

1) System Initialization: In this phase, all participants first
establish common system parameters. Then, every participant
Pn generates two pairs of EVCM keys for forward and back-
ward propagations, respectively. Finally, through exchanging
and aggregating partial ciphertext models, participants obtain
the initial ciphertext global model.
• Step 1: Parameter Establishment
In this step, N participants first agree on the security

parameters (k0, k1, k2) of SHE.
Then, the model structure is determined by all participants,

which consists of the type (i.e., FC or Cov) and size hl, dl, cl
of each layer, activation function σ, pooling function ρ, loss
function ζ, learning rate α, batch size β, and so on. Specif-
ically, the model structure contains N FC and Cov layers,
and the weight matrix of the l-th layer is written as W l. For
simplicity, we assume the activation function is used for every
FC or Cov layer, and every Cov layer is followed by a pooling
layer.

After that, determine the precision parameter L0. Since the
float numbers can not be encrypted directly by SHE, each

element x in data or model is first expanded by x = ⌊κx⌋
(expansion factor κ is less than 2L0−1) before encryption and
divided by κ when decryption.

Finally, each participant executes PGen(L0, k1) to generate
public parameter PP = {Ns, L0, L1, L2}.
• Step 2: Key Generation
In this step, according to the security parameters of SHE,

each participant Pn first executes KGen(k0, k1, k2) to gen-
erate two EVCM key pairs, written as (fpkn, fskn) and
(bpkn, bskn), which are used for cipher-based forward and
backward propagations respectively.

Then, Pn sends its public keys fpkn and bpkn to other
participants over a secure channel.

Finally, Pn has its private keys {fskn, bskn}, and all public
keys {fpki, bpki}i=0,··· ,N−1.
• Step 3: Ciphertext Model Initialization
As shown in Algorithm 2, every Pn first generates its partial

model randomly, which is then encrypted and exchanged
with others, and the ciphertext global model is finally ob-
tained through aggregating multiple partial ciphertext models.
Moreover, the global model is processed by function Sign
for executing subsequent training integrity verification. The
detailed process is as follows.

Algorithm 2 Ciphertext Model Initialization
1: for l = 1, . . . , N do
2: ▷ Generate partial model. ◁
3: if l-th layer is FC layer then
4: Randomly generate M l

n ∈ R(hl−1×hl) and pln ∈ Rhl .
5: Transpose M l

n to [M l
n]

T ∈ R(hl×hl−1).
6: if l-th layer is Cov layer then
7: Randomly generate M l

n ∈ R(d2l cl−1×cl), pln ∈ R(wlhl×cl).
8: rot(M l

n)→ [M l
n]

T ∈ R(d2l cl×cl−1).
9: ▷ Encrypt partial model for forward propagation. ◁

10: ⟨M l
n⟩ ← Pack(Sign(M l

n, ZV)).
11: for i = 0, 1, · · · , N − 1(i ̸= n− 1) do
12: Send J⟨M l

n⟩Ki+1 ← Enc(⟨M l
n⟩, fpki+1) to Pi.

13: ⟨pln⟩ ← Pack(Sign(pln, ZV)).
14: for i = 0, 1, · · · , N − 1 do
15: Send J⟨pln⟩Ki+1 ← Enc(⟨pln⟩, fpki+1) to Pi.
16: Generate random signature vectors SV l

n.
17: ⟨M l

n⟩ ← Pack(Sign(M l
n, SV

l
n)).

18: Send J⟨M l
n⟩Kn ← Enc(⟨M l

n⟩, fpkn) to Pn−1.
19: ▷ Encrypt partial model for backward propagation. ◁
20: if l-th layer is FC layer then
21: Generate random signature vectors SV ′l

n.
22: ⟨[M l

n]
T ⟩ ← Pack(Sign([M l

n]
T
, SV ′l

n)).
23: Send J⟨[M l

n]
T ⟩Kn ← Enc(⟨[M l

n]
T ⟩, bpkn) to Pn+1.

24: ⟨[M l
n]

T ⟩ ← Pack(Sign([M l
n]

T
, ZV)).

25: for i = 0, 1, · · · , N − 1(i ̸= n+ 1) do
26: Send J⟨[M l

n]
T ⟩Ki−1 ← Enc(⟨M l

n⟩, bpki−1) to Pi.
27: ▷ Aggregate partial ciphertext models. ◁
28: for l = 1, . . . , N do
29: J⟨W l⟩Kn+1 =

⊕N−1
i=0 J⟨M l

i ⟩Kn+1
.

30: J⟨bl⟩Kn+1 =
⊕N−1

i=0 J⟨pli⟩Kn+1
.

31: J⟨[W l]
T ⟩Kn−1 =

⊕N−1
i=0 J⟨[M l

i]
T ⟩K

n−1
.

• Generate partial models. For a FC or Cov layer, Pn

generates a hl−1 × hl or d2l cl−1 × cl random matrix as its
partial weight M l

n, then generates a hl-dimensional random
vector or wlhl×cl random matrix as its partial bias pln, where
x ∈M l

n, p
l
n satisfies x ∈ (− 1

N , 1
N).

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

7

Ⅰ System Initialization

Ⅱ Cipher-based Model Propagation

Ⅲ Cipher-based Model UpdatingⅣ Training Completed

Key Generation

Cipher-based Forward
Propagation

Cipher-based Backward
Propagation

Final Model DecryptionParameter Establishment Convergence Judgment

Cipher-based Local Update
Calculation

Global Model Updating
…

0P

2P 1P

1
1z

0

3
z

2

2
z 2 2(,)z a 1 1(,)z a

0P

2P 1P

2

2
aG

1

1a
G 2 2(,)aG 1 1(,)aG

0P 1P 2P1
W

2
W

0
W W

T T

b

T

W

W W G

b b G

W W G

Input: X Input: Y

0
()

W
G

1
()

W
G

2

0,2

0P

2P 1P

1
2,1

1,

3

0

1

1
[]Ta

2

2
[

]T
a

0
0

[
] T

a

W Output: W W

3()a 3()

Execution flowStep Phase Parameter

0k h

0
bpk

0
fpk

Ciphertext Model Initialization

1
()W

0P

2P 1P
1 0

M
0

()W
2

()W

2 2
M

1
1

M

0
2

M

0
0

M

2

1

M

0
L k c

0
bsk

1
bpk

1
bsk 2

bpk
2

bsk

0
fsk

1
fpk

1
fsk

2
fpk

2
fsk

2
()

W
G

3

3
(,)
(,)

l aos Y
acc Y

s
a

Y

N

JudgmentEntity

Fig. 5. The overview of PVD-FL.

• Encrypt partial models for forward propagation. In this
step, M l

n and pln are signed, packed, and encrypted 1 with
fpki+1 for all other Pi. Specifically, J⟨M l

n⟩Kn signed with
random signature vector SV l

n is sent to Pn−1
2 for verifica-

tion, and J⟨M l
n⟩Ki+1 signed with zero vector ZV is sent to

corresponding Pi(i ̸= n− 1).
• Encrypt partial models for backward propagation. In this

step, [M l
n]

T is encrypted with bpk for backward propagation,
and J⟨[M l

n]
T ⟩Kn signed with random signature vector SV ′l

i is
sent to Pn+1, and J⟨M l

n
T ⟩Ki−1 signed with zero vector ZV

is sent to corresponding Pi(i ̸= n+ 1).
• Aggregate partial ciphertext models. After receiving all

partial models from other participants, Pn calculates the
global model J⟨W l⟩Kn+1, J⟨[W l]

T ⟩Kn−1, and J⟨bl⟩Kn+1 via
aggregating them over ciphertexts.

In summary, after ciphertext model initialization, all par-
ticipants obtain a common ciphertext model encrypted by
different public keys. Specifically, W l and bl of each Pn are
encrypted with fpkn+1 and signed with SV l

n+1 for forward
propagation, and [W l]

T is encrypted with bpkn−1 and signed
with SV ′l

n−1 for backward propagation.
2) Cipher-based Model Propagation: At each training

round, based on EVCM algorithm, all participants perform
forward propagation over the ciphertext global model to ob-
tain loss. Similarly, participants propagate the loss back for
obtaining all layers’ derivatives, which are used for subse-
quent model updating. Particularly, the calculation integrity of
forward and backward propagations can be verified by EVCM.
• Step 1: Cipher-based Forward Propagation

1For simplicity, the input PP of Sign,Pack,Mul, and Unpack is omitted.
2The indexes of the participants are calculated with a module N , e.g., P1+2

is equivalent to P0 when N = 3.

Algorithm 3 Cipher-based Forward Propagation
1: for Pn+l(l = 0, 1, · · · , N) do
2: if l ̸= 0 then
3: al, V V ← Unpack(Dec(J⟨zl⟩Kn+l, fskn+l)).
4: if Ver(SV l

n+l, V V) ̸= 0 then
5: Propagation terminated.
6: al = σ(zl).
7: if the l-th layer is Cov layer then
8: al ← ρ(al).
9: if l ̸= N then

10: J⟨zl+1⟩Kn+l+1←Mul(al, J⟨W l+1⟩Kn+l+1) � J⟨bl+1⟩Kn+l+1

11: Send J⟨zl+1⟩Kn+l+1 to Pn+l+1.

In this step, every participant Pn first randomly selects β
data samples X as input a0, and the corresponding labels
are written as Y . Then, as shown in Algorithm 3, given the
input a0, all participants each propagate one layer and Pn

finally obtains output aN . The forward propagation process is
as follows.
• Input layer. Participant Pn propagates a0 over the cipher-

text global model J⟨W 1⟩Kn+1 to obtain J⟨z1⟩Kn+1, which is
sent to the next participant Pn+1.
• Hidden layer. Participant Pn+l(l ̸= 0, N) first decrypts

and unpacks received J⟨zl⟩Kn+l. Then, since the calculations
of the pool function ρ and activation function σ do not
need the model parameters, they are calculated directly by
Pn+l. After that, Pn+l(l ̸= 0, N) executes function Mul with
J⟨W l+1⟩Kn+l+1 to obtain J⟨zl+1⟩Kn+l+1 and sends it to the
next participant Pn+l+1.
• Output layer. Pn decrypts J⟨zN ⟩Kn and obtains aN .
It is noteworthy that, the functions flattenX and clusterX

introduced in Section III-A will be executed before and after a
convolutional operation, which are omitted in the algorithm for
simplicity. Moreover, the function Ver will be executed after
every propagation to prevent miscalculations. If verification

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

8

fails, the forward propagation will terminate and no changes
will be made to the global model.
• Step 2: Cipher-based Backward Propagation
In this step, as shown in Algorithm 4, Pn first calculates

the derivative δN based on labels Y . Then, each participant
Pn−l(l = 0, 1, · · · , N − 1) propagates back one layer and
obtains the derivative GN−l

a of this layer. The backward
propagation process is as follows.
• Output layer. Based on J⟨[WN]

T ⟩Kn−1, Pn calculates
J⟨GN−1

a ⟩Kn−1 by function Mul and sends it to Pn−1.
• Hidden layer. Participant Pn−l(l ̸= 0) first decrypts

and unpacks received J⟨GN−l
a ⟩Kn−l. Then, Pn−l calculates

the derivative δN−l. After that, JGN−l
a K is also calcu-

lated with J⟨[WN−l−1]
T ⟩Kn−l−1 by function Mul. Finally,

J⟨GN−l−1
a ⟩Kn−l−1 is sent to the previous participant Pn−l−1.
• Input layer. Participant Pn+1 decrypts J⟨G1

a⟩Kn+1 and
obtains δ1.

Similarly, V V ′ is also used to ensure the calculation in-
tegrity of backward propagation.

Algorithm 4 Cipher-based Backward Propagation
1: for Pn−l(l = 0, 1, · · · , N − 1) do
2: if l ̸= 0 then
3: GN−l

a , V V ′ ← Unpack(Dec(J⟨GN−l
a ⟩Kn−l, bskn−l)).

4: if Ver(SV ′N−l
n−l , V V ′) ̸= 0 then

5: Propagation terminated.
6: if the (N − l)-th layer is Cov layer then
7: GN−l

a ← upsample(GN−l
a).

8: δN−l = GN−l
a ⊙ σ′(zN−l).

9: else
10: δN ← ζ′(aN , Y).
11: if j ̸= N − 1 then
12: J⟨GN−l−1

a ⟩Kn−l−1←Mul(δN−l, J⟨[WN−l]
T ⟩Kn−l−1).

13: Send J⟨GN−l−1
a ⟩Kn−l−1 to Pn−l−1.

3) Cipher-based Model Updating: After obtaining the
derivative of every layer, the ciphertext local updates are cal-
culated between every two neighbor participants. Then, each
Pn sends its local updates to others for executing ciphertext
global model updating.
• Step 1: Cipher-based Local Update Calculation
After cipher-based model propagation, each participant

Pn+l(l = 0, 1, · · · , N − 1) obtains δl and al.
In this step, as shown in Algorithm 5, Pn+l first encrypts

packed ⟨δl⟩ with all fpki(i ̸= n + l − 1) and send them to
Pn+l−1. Similarly, ⟨al⟩ is encrypted with all bpki(i ̸= n+ l+

1), which is then sent to Pn+l+1. Then, unpacked [δl]
T and

[al]
T are encrypted with fpkn+l and bpkn+l, and are sent to

Pn+l−1 and Pn+l+1 respectively.
After receiving all ciphertexts from others, Pn+l calculates

local updates J⟨Gl+1
W ⟩Ki and J⟨[Gl

W]
T ⟩Ki, and sends them to

corresponding Pi−1 and Pi+1.
Finally, Gl

b is calculated with δl by a single participant
Pn+l, which then is packed and encrypted with all fpki and
sent to Pi−1.

• Step 2: Global Model Updating

Algorithm 5 Cipher-based Local Update Calculation
1: for Pn+l(l = 0, 1, · · · , N − 1) do ▷ Encrypt δl and al.
2: ⟨δl⟩ ← Pack(Sign(δl, ZV)).
3: for i ̸= n+ l − 1 do
4: Send J⟨δl⟩Ki ← Enc(⟨δl⟩, fpki) to Pn+l−1.
5: Send J[δl]T Kn+l ← Enc([δl]T , bpkn+l) to Pn+l−1.
6: ⟨al⟩ ← Pack(Sign(al, ZV)).
7: for i ̸= n+ l + 1 do
8: Send J⟨al⟩Ki ← Enc(⟨al⟩, bpki) to Pn+l+1.
9: Send J[al]T Kn+l ← Enc([al]

T
, fpkn+l) to Pn+l+1.

10: for Pn+l(l = 0, 1, · · · , N − 1) do ▷ Calculate local updates.
11: for i ̸= n+ l do
12: J⟨Gl+1

W ⟩K
i
← Mul(α

βN
[al]T , J⟨δl+1⟩Ki).

13: Send J⟨Gl+1
W ⟩K

i
to Pi−1.

14: J⟨[Gl
W]

T ⟩K
i
← Mul(α

βN
[δl]

T
, J⟨al−1⟩Ki).

15: Send J⟨[Gl
W]

T ⟩K
i

to Pi+1.
16: J⟨Gl

W ⟩Kn+l−1
← Mul(J[al−1]

T Kn+l−1,
α

βN
⟨δl⟩).

17: Send J⟨Gl
W ⟩Kn+l−1

to Pn+l−2.

18: J⟨[Gl+1
W]

T ⟩K
n+l+1

← Mul(J[δl+1]
T Kn+l+1,

α
βN
⟨al⟩).

19: Send J⟨[Gl+1
W]

T ⟩K
n+l+1

to Pn+l+2.
20: for i = 0, 1 · · · , N − 1 do
21: Gl

b =
∑

δl.
22: Send J⟨Gl

b⟩Ki ← Enc(⟨Gl
b⟩, fpki) to Pi−1.

After Step 1, each Pn+l obtains the local updates J⟨GW ⟩K,
J⟨[GW]

T ⟩K, and J⟨Gb⟩K of all layers. Then, based on the local
updates of all layers, its global model is updated as

J⟨W l⟩K = J⟨W l⟩K � J⟨Gl
W ⟩K,

J⟨[W l]
T ⟩K = J⟨[W l]

T ⟩K � J[Gl
W]

T
K,

J⟨bl⟩K = J⟨bl⟩K � J⟨Gl
b⟩K, (l = 1, 2, · · · , N).

Moreover, the correct calculation can also be ensured during
the model updating phase. Once a participant executes a wrong
or incomplete calculation, the updated global model will not
satisfy the verification in the next round of model propagation.

So far the global model is trained with the data of Pn for
one round. Notably, we only introduce the training process of
Pn and others train the model in the same way, which can be
executed parallelly.

4) Training Completed: On finishing certain rounds of
model training, every Pn will judge whether the global model
converges based on the loss and accuracy. Then, when is
judged to converge by all participants, the ciphertext global
model is decrypted for providing services.
• Step 1: Convergence Judgment
Since the global model is kept confidential during the whole

training process, it is difficult to execute convergence judgment
with test data. According to the i.i.d. assumption of training
data, we judge the model convergence simply by loss value or
prediction accuracy with training data.

For each participant Pn, it will obtain the loss value and
prediction accuracy of its one data batch after every forward
propagation. Since a data batch may not be representative, the
average loss and prediction accuracy in multi-round training
is used to judge the model convergence.

When Pn judges the global model has converged, it will
stop model training with its data but execute model updating as
usual. Until every participant judges the model has converged,

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

9

the model training process stops and the final ciphertext global
model is obtained by all participants.
• Step 2: Final Model Decryption
In this step, every participant Pn sends its ciphertext global

model JW lKn+1 and JblKn+1(l = 1, 2, · · · , N) to the next
participant Pn+1. Finally, Pn+1 decrypts it with its private
key fskn+1 and obtains the plaintext global model.

V. SECURITY ANALYSIS

In this section, we first prove the verification correctness
briefly. Then, we prove the confidentiality of PVD-FL un-
der the honest-but-curious assumption. Finally, we show that
PVD-FL can well resist the existing and potential inference
attacks.

A. Verification Correctness

During iterative model training, a participant may execute
incomplete or incorrect calculations, which will impact the
integrity of the model training. Benefiting from the verifica-
tion ability of the EVCM algorithm, PVD-FL allows every
participant to verify the calculation correctness of every model
propagation or updating step. Here we just prove the verifica-
tion correctness of every forward propagation in the following,
and the proofs of backward propagation and model updating
are similar to it and are omitted.

Theorem 1. During each forward propagation, output b =
0 of function Ver proves that the result J⟨z⟩Kn is calculated
correctly by Pn−1.

Proof. In the system initialization phase, for Pn−1, only
J⟨Mn⟩Kn is signed with random vector SV , and others are
signed with zero vector ZV , where SV is generated and
saved by Pn. The global model is calculated by J⟨W ⟩Kn =⊕N−1

i=0 J⟨Mi⟩Kn = J⟨
∑N−1

i=0 Mi⟩Kn, so J⟨W ⟩Kn is also signed
with SV .

In the cipher-based model updating phase, J⟨W ⟩Kn will be
updated by J⟨W ⟩Kn = J⟨W ⟩Kn �J⟨GW ⟩Kn = J⟨W +GW ⟩Kn.
Since J⟨GW ⟩Kn is signed with zero vector ZV , J⟨W ⟩Kn is
always signed with SV during the whole training process.
Similarly, J⟨b⟩Kn is always signed with ZV .

In PVD-FL, J⟨W ⟩Kn and J⟨b⟩Kn are obtained by Pn−1. At
each forward propagation, J⟨z⟩Kn is calculated by J⟨z⟩Kn ←
Mul(a, J⟨W ⟩Kn)�J⟨b⟩Kn. Therefore, each element J⟨z⟩v,sKn ∈
J⟨z⟩Kn is calculated as

J⟨z⟩v,sKn

=
h−1⊕
i=0

J⟨W ⟩i,sKn � av,i � J⟨b⟩nKn

=J
h−1∑
i=0

av,i(

Ns−1∑
j=1

wi,sNs+j · 2jL2+svi,s)+

Ns−1∑
j=1

bsNs+j · 2jL2Kn

=J
Ns−1∑
j=1

(
h−1∑
i=0

av,iwi,sNs+j + bsNs+j) · 2jL2 +
h−1∑
i=0

av,isvi,sKn,

where h is the column number of a. According to L2 > 4L0+
3log(U)−3 and L1 > 2L0+log(U)−1, each J⟨z⟩v,sKn can be

correctly decrypted with fskn and unpacked by Pn. After that,
Pn obtains the verification value vvs =

∑h−1
i=0 aβ,isvi,s =∑h−1

i=0 svi,s.
Considering the condition of incomplete calculation, we

assume that only one element J⟨W ⟩k,sKn � av,k is omitted
while calculating J⟨z⟩v,sKn. Then, the verification value vvn

is obtained as vvs =
∑h−1

i=0,i̸=k svi,s, and the verification will
fail according to svk,s ̸= 0. Therefore, even though only one
element is omitted while executing our cipher-based forward
propagation, the incomplete calculation result will not satisfy
the verification.

Considering the other condition of incorrect calculation,
similarly, we assume that only one element is changed while
calculating J⟨z⟩v,sKn. If J⟨W ⟩k,sKi is changed, svj,s will
change to a random number, and the verification will fail.
Therefore, the incorrect calculation result will also not satisfy
the verification.

In summary, if vvs =
∑h−1

i=0 svi,s is verified by Pn, i.e., b =
0, this forward propagation is verified as correct execution.

B. The Security of PVD-FL framework

In this subsection, we prove that the global model and
local update are confidential in PVD-FL under the honest-
but-curious assumption.

Theorem 2. Local update GW is confidential at each round
of cipher-based model updating.

Proof. At each cipher-based model updating, ciphertext local
update J⟨GW ⟩K is calculated between neighbor participants.

As shown in Algorithm 5, for the l-th layer’ local up-
date J⟨Gl

W ⟩K, Pn+l sends J⟨δl⟩Ki to Pn+l−1, which is en-
crypted with fpki(i ̸= n + l − 1). Through calculating
Mul(α

βN [al−1]T , J⟨δl⟩Ki), J⟨Gl
W ⟩Ki is obtained. Since it is

equivalent to solving (L, p)-based decision hard problem to
distinguish ciphertexts encrypted by SHE, the SHE technique
is semantically secure against chosen-plaintext attack (CPA)
[33], [34]. Moreover, according to the non-collusion assump-
tion defined in our threat model, Pn+l−1 cannot obtain private
keys of other participants. Thus, if the (L, p)-based decision
problem is intractable in polynomial time, J⟨δl⟩Ki and J⟨Gl

W ⟩Ki
are confidential for Pn+l−1.

Similarly, J⟨Gl
W ⟩Kn+l−1 is calculated by Pn+l with

J[al−1]
T Kn+l−1 and α

βN ⟨δ
l⟩, which is also confidential for

Pn+l based on the IND-CPA security of SHE.
Therefore, GW of each layer is confidential at each cipher-

based model updating.

Theorem 3. Global model W is confidential during the system
initialization and cipher-based model training phases.

Proof. During system initialization, each participant Pn re-
ceives ciphertext partial models J⟨Mi⟩Kn+1(i = 0, · · · , N−1),
and obtains J⟨W ⟩Kn+1 by aggregating them over ciphertexts,
which based on SHE’s IND-CPA security is also confidential
for Pn. Thus, after system initialization, each participant
obtains a ciphertext global model J⟨W ⟩K.

Then, at each model training round, the ciphertext global
model J⟨W ⟩Kn+1 of Pn is updated with J⟨GW ⟩Kn+1, which

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

10

is also confidential for Pn according to Theorem 2. Thus,
the ciphertext global model J⟨W ⟩Kn+1 is always updated over
ciphertexts until convergence.

Therefore, global model W is always confidential during the
whole system initialization and model training phases.

C. Discussion of Inference Attacks
In this subsection, we first introduce the existing inference

attacks briefly, which contain the inference of properties, mem-
bership, training inputs, and labels [5]. Then, we analyze our
PVD-FL against these inference attacks. Moreover, we analyze
in detail the possibility of launching a potential inference
attack from the parameters leaked in PVD-FL.
• Property inference. The property inference attack allows

an adversary participant to infer others’ data property with
observed local updates and its auxiliary training data [8].
Specifically, the adversary participant may train a binary
property classifier, which could classify a data sample into
its corresponding property according to its calculated local
updates.
• Membership inference. The membership inference attack

can infer whether a certain data sample is used to train the
model [37]. Specifically, given a data batch, the parameters of
an embedding layer are updated only when certain data appear
in this batch, which reveals the information of training data.
• Inferring training inputs and labels. There is an optimiza-

tion algorithm called Deep Leakage from Gradients (DLG) [6]
that can infer the training inputs and labels with the observed
local updates and model parameters in just a few rounds.
Specifically, the adversary participant will generate dummy
data and optimize them iteratively to fit the observed local
updates calculated by others’ training data, and the accurate
raw data will be recovered finally.

Analysis of existing inference attacks. The existing attacks
infer the data information mainly based on the local update,
global model, or both of them. However, in PVD-FL, as proved
above, the local updates and global model are kept confidential
in the whole iterative training process. Therefore, it can be
simply proved that these inference attacks are all invalid in
PVD-FL.

Analysis of potential inference attacks. In PVD-FL, the
leaked parameters contain the model training hyperparameters,
model size parameters, and intermediate parameters z and Ga

calculated during model propagation.
First, the first two types of parameters are considered non-

sensitive since they do not contain any data information.
Then, for intermediate parameters zl of Pn+l, they are

calculated with zl = al−1W l + bl, where W l and bl are
confidential and changing in the whole model training process.
Meanwhile, al−1 is held by Pn+l−1 and is different at each
training round, which is unknown for Pn+l under the non-
collusion assumption. Thus, leaked zl cannot be used to infer
any data information. Similarly, for Pn−l, Gn−l

a is just a matrix
product with unknown and changing δn−l+1 and [Wn−l+1]

T ,
which also cannot launch inference attacks.

Moreover, we consider another stronger inference attack
similar to DLG. The adversary participant may also gener-
ate dummy data to fit z and Ga. However, this inference

attack requires propagating the dummy data over the global
model for multiple rounds, which is impracticable in PVD-FL.
Specifically, since the global model is confidential in PVD-
FL, it is impossible to execute model propagation locally.
Meanwhile, even if the adversary participant inputs dummy
data for collaborative propagation at every training round, the
calculated z and Ga with dummy data are not at the same
layer as that observed, which cannot be used to update the
dummy data for fitting other’s training data.

In summary, PVD-FL can resist the existing and potential
inference attacks well.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the efficiency of our
proposed EVCM algorithm. Then, we present the experimental
results of PVD-FL on four real-world datasets, and analyze its
performance in terms of the model accuracy, computational
cost, and communication overhead. Moreover, an MPC-based
two-party neural network training scheme, namely QUO-
TIENT [19], is used to compare with PVD-FL from the above
aspects.

A. Experimental Environment

In order to evaluate the performance of PVD-FL, the
experiments are conducted over Dell Precision 7920 machines
equipped with 256.0 GB RAM and Intel(R) Xeon(R) Gold
6226R 2.90GHz processor, running Ubuntu 20.04. The ma-
chines are connected in a LAN environment with an average
latency of 0.3ms and a bandwidth of 1.8GB/s.

It should be noted that this network configuration is to
facilitate a fair performance comparison with QUOTIENT,
and indeed PVD-FL has little dependence on communication
bandwidth due to its low communication overhead, which will
be explained in Section VI-C4.

We use Python 3.8.1 and the Numpy 1.17.0 package to
implement EVCM algorithm and evaluate the time costs of
different functions with different SHE security parameters
(k0, k1, k2), bit length L0 and matrix size D. For simplicity,
EVCM is evaluated with random square matrices of size
D = 64, 128, 256, or 512. We set the bit length L0 of elements
in matrices as 10, 15, 20, or 25, and set the security parameters
(k0, k1, k2) as (3072, 600, 768) and (6144, 1300, 1536).

Moreover, we implement our PVD-FL framework based on
EVCM, and evaluate the model accuracy, computational cost,
and communication overhead on four real-world datasets. In
PVD-FL, the parameters are set as k0 = 6144, L0 = 15, L1 =
38, L2 = 84, and Ns = 15, and we use multiple machines to
execute protocol process of different participants.

B. Data-independent benchmarking of EVCM

In this section, we present the time costs of the EVCM
algorithm in Fig. 6, which will be used to execute the most
basic calculations of model training in PVD-FL.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

11

64128 256 512
0.0

0.1

0.2

0.3
Co

m
pu

ta
tio

n
tim

e
(s

)
Pack (k0 = 3072)

L0 = 25
L0 = 20
L0 = 15
L0 = 10

64128 256 512
0.0

0.2

0.4

Enc (k0 = 3072)

64128 256 512
0.0

0.5

1.0

Mul (k0 = 3072)

64128 256 512
0.0

0.2

0.4

Dec (k0 = 3072)

64128 256 512
0.0

0.1

0.2

0.3
Unpack (k0 = 3072)

64128 256 512
D

0.0

0.1

0.2

0.3

Co
m

pu
ta

tio
n

tim
e

(s
)

Pack (k0 = 6144)

64128 256 512
D

0.0

0.2

0.4

Enc (k0 = 6144)

64128 256 512
D

0.00

0.25

0.50

0.75

1.00
Mul (k0 = 6144)

64128 256 512
D

0.0

0.1

0.2

0.3

0.4
Dec (k0 = 6144)

64128 256 512
D

0.0

0.1

0.2

0.3
Unpack (k0 = 6144)

Fig. 6. Time cost of EVCM.

1) Time costs with different security parameters k0:
Through comparing the subfigures in the first and second rows,
we find that the time costs of k0 = 3072 are markedly higher
than that of k0 = 6144. Specifically, the increased security
parameter k0 brings linear growth of time cost, but it also
brings more plaintext slots, which causes a decrease of the
total time costs. Therefore, in PVD-FL, we choose k0 = 6144
to reach both security and efficiency.

2) Time costs with different bit length L0: From a single
subfigure in Fig. 6, we find that the time costs increase with
the growth of the bit length L0. In EVCM algorithm, smaller
L0 means smaller plaintext space L2 and more plaintext slots,
which will reduce the number of homomorphic additions and
multiplications and thus reduce the total time costs. In PVD-
FL, the bit length L0 denotes the precision of training data
and model parameters, and we choose L0 = 15 to balance the
accuracy and efficiency.

3) Time costs of different functions: Through observing
the time costs of different functions, we can find that there
is a difference in the time consumption of different func-
tions. Specifically, functions Pack and Unpack are less time-
consuming and even can be ignored, but function Mul is
time-consuming. Therefore, in PVD-FL, the training protocols
should be carefully designed, and the calculation times of
function Mul should be minimized.

C. Experiments of PVD-FL on real-world datasets
In this section, we evaluate the model accuracy, computa-

tional cost, and communication overhead of PVD-FL on four
real-world datasets, then make a comparison with QUOTIENT.

1) Datasets and model architectures: Our PVD-FL is eval-
uated with MNIST [38], Thyroid [39], Breast cancer [40], and
German credit [41] datasets. The training task on all datasets is
to train a DNN model that could make accurate classifications
to corresponding data samples, and the training data is divided
evenly to N participants. The introduction of these datasets
is as follows, and the corresponding model architecture and
parameter setting are shown in TABLE II.

TABLE II
MODEL ARCHITECTURE AND PARAMETER SETTING IN PVD-FL.

dataset architecture 1 α β N

MNIST

32Cov 5→ MP2→ 64Cov 5

→ MP2→ 512FC→ 10CEE
1.0 32 4

3× (128FC)→ 10CEE 1.0 32 4
3× (512FC)→ 10CEE 1.0 32 4

Thyroid 2× (100FC)→ 3MSE 0.01 32 3
Breast cancer 3× (512FC)→ 2MSE 0.01 32 4
German credit 2× (124FC)→ 2CEE 0.001 32 3

• MNIST. The handwritten digits recognition (MNIST)
dataset contains 60000 training and 10000 testing 28 × 28
gray images of different handwritten digits from 0 to 9, and
each label is a 10-dimension one-hot vector.
• Thyroid. The thyroid dataset contains 3772 training and

3428 testing data, where each data sample consists of 21
features and a label (normal, hyperfunction, and subnormal).
• Breast cancer. The breast cancer dataset contains 5547

50 × 50 RGB images of the breast cancer histopathology,
and each data sample of a patient is classified into invasive
ductal or non-invasive ductal carcinoma. In our experiments,
the dataset is divided into 5000 training and 1547 testing data.
• German credit. The German credit dataset contains 1000

data of bank account holders, which are classified to have good
or bad credit, and each data sample has 20 attributes. We use
the 8 : 2 split for training and testing, respectively, and the
data are normalized before training.

2) Model Accuracy: For analyzing the model accuracy, we
plot the model convergence curves of PVD-FL in Fig. 7, and
also plot the curves of QUOTIENT, centralized training, and
local training for comparison. Specifically, centralized training
means executing model training in a center that collects all
training data. In local training, the model is trained with just
the local training data owned by one participant.

1MP, CEE, and MSE denote max pooling, cross entropy error, and mean
square error respectively.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

12

TABLE III
MODEL ACCURACY OF DIFFERENT DATASETS AND DNN ARCHITECTURES AFTER 1, 5, AND 10 TRAINING EPOCHS USING PVD-FL AND QUOTIENT.

Epoch
MNIST Thyroid Breast cancer German credit

3× (128FC) 3× (512FC) CNN 2× (100FC) 3× (512FC) 2× (124FC)

PVD-FL QUO. PVD-FL QUO. PVD-FL QUO. PVD-FL QUO. PVD-FL QUO. PVD-FL QUO.
1 91.49% 90.23% 94.63% 94.24% 96.54% 88.16% 91.86% 24.80% 56.12% 49.40% 31.00% 41.00%

5 96.84% 95.36% 97.54% 97.45% 97.54% 98.72% 94.06% 93.41% 74.77% 73.60% 46.00% 72.50%

10 97.37% 96.04% 97.94% 98.12% 98.47% 98.89% 94.90% 94.53% 77.14% 76.00% 80.05% 79.00%

0 1 2 3 4 5 6 7 8 910
80

85

90

95

100

M
od

el
 a

cc
ur

ac
y

(%
)

MNIST 3X(128 FC)

PVD-FL
QUOTIENT
Centralized
Local

0 1 2 3 4 5 6 7 8 910
80

85

90

95

100 MNIST 3X(512 FC)

0 1 2 3 4 5 6 7 8 910
80

85

90

95

100 MNIST CNN

0 1 2 3 4 5 6 7 8 910
Epoch

90

92

94

M
od

el
 a

cc
ur

ac
y

(%
)

Thyroid 2X(100 FC)

0 1 2 3 4 5 6 7 8 910
Epoch

60

70

80 Breast 3X(512 FC)

0 1 2 3 4 5 6 7 8 910
Epoch

0

20

40

60

80
German 2X(124 FC)

Fig. 7. Model accuracy comparison with PVD-FL, QUOTIENT, centralized
training, and local training.

1 5 10
0

20

40

60

80

100

120

Co
m

pu
ta

tio
n

tim
e

(h
)

MNIST 3X(128 FC)
PVD-FL
QUOTIENT

1 5 10
0

50
100
150
200
250
300
350
400
450

MNIST 3X(512 FC)
PVD-FL
QUO

1 5 10
0

25

50

75

100

125

150

175

200
MNIST CNN
PVD-FL

1 5 10

Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Co
m

pu
ta

tio
n

tim
e

(h
)

Thyroid 2X(100 FC)
PVD-FL
QUO

1 5 10

Epoch

0

20

40

60

80

100

120

140

160
Breast 3X(512 FC)

PVD-FL
QUO

1 5 10

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
German 2X(124 FC)

PVD-FL
QUO

Fig. 8. Computational cost comparison of PVD-FL and QUOTIENT.

From Fig. 7, we find that the model accuracy after ten
epochs is almost the same for PVD-FL, QUOTIENT, and
centralized training, which is significantly higher than the
accuracy under local training. Moreover, the model under
PVD-FL, QUOTIENT, and centralized training converge at
almost the same speed. Therefore, the experimental results
show that our PVD-FL causes no loss of model accuracy
and convergence speed, which further demonstrates that PVD-
FL can be used in practical environments. For showing more
clearly, the model accuracy comparison results of different
datasets are listed in TABLE III.

3) Computational Cost: Fig. 8 shows the computational
costs of our PVD-FL and QUOTIENT on different datasets
and DNN architectures.

For training the same 3×(512FC) DNN models, the model
training speed on MNIST dataset is lower than on breast
cancer dataset, since the training data size of MNIST dataset
is more than that of breast cancer dataset. For different DNN
architectures on the same MNIST dataset, the computational
cost of 3× (512FC) is almost 4 times that of 3× (128FC),
which shows that the computational cost increases linearly
with the growth of the model scale.

Through observing each subfigure, we find that the com-
putational costs increase linearly with the growth of training
epochs for both PVD-FL and QUOTIENT. Moreover, we
can find that PVD-FL’s computational costs are markedly
lower than QUOTIENT’s when training FC models, e.g., for
a 3× (128FC) model, it only takes one hour to perform one
epoch model training in PVD-FL but takes more than 10 hours
in QUOTIENT under the same LAN environment. For CNN
model training, there is no total computational cost provided
by QUOTIENT, but it only takes 17 hours to execute one
epoch training for a LeNet-5 model in PVD-FL, which first
makes it practical to execute privacy-preserving decentralized
model training for the state-of-the-art CNN model.

4) Communication Overhead: Fig. 9 shows PVD-FL’s
communication overhead of different steps for a single par-
ticipant. For the same MNIST dataset, the communication
overhead of model initialization and decryption for training
CNN models is less than that for training DNN models, since
the number of CNN’s model parameters (i.e., convolutional
kernel) is less than DNN’s parameters. But the model training
communication overhead of CNN models is higher than that
of DNN models, since the convolutional operation brings
massive intermediate parameters during model propagation.
For different datasets, the communication overhead of MNIST
dataset is markedly higher than others for all steps, which
is because the feature number (784) of MNIST dataset is
markedly more than that of other datasets.

Overall, the communication overhead of PVD-FL is indeed
low, e.g., it just takes a participant less than 7 MB or 16 MB
for executing one round of 3× (512FC) or CNN model pro-
gagation, which shows that PVD-FL has low requirements for
the network bandwidth and can be used in most environments.

VII. RELATED WORK

In this section, we briefly introduce some related works
about privacy-preserving, verifiable, and decentralized FL.

A. Privacy-preserving FL.
Although FL makes it possible to construct a global model

without collecting participants’ raw training data, the ex-

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

13

MNIST 3X(128 FC) MNIST 3X(512 FC) MNIST CNN Thyroid 2X(100 FC) German 2X(124 FC)
0

20

40

60

80

272.7
Co

m
m

un
ica

tio
n

co
st

 (M
B)

Model Initialization
Forward Propagation
Backward Propagation

Update Calculation
Model Updating
Model Decryption

Fig. 9. Communication overhead of a single participant.

changed global model and local updates still contain massive
data information. Based on the double mask method, Bonawitz
et al. [9] designed a secure aggregation algorithm to aggregate
the local updates without leaking any single local updates,
which can protect the local updates from inference attacks,
but the global model is still exposed to every participant in
plaintext. Truex et al. [15] proposed a scheme named LDP-Fed
to ensure privacy-preserving through adding random noises
into local updates, which can provide a formal differential
privacy guarantee for iterative collection of local updates in
FL, but it will bring a trade-off of accuracy loss. Moreover,
Agrawal et al. [19] proposed a two-party secure DL scheme
named QUOTIENT through designing novel MPC protocols,
and improved its efficiency by applying layer normalization
and adaptive gradient methods, but its computation and com-
munication costs are still high and unacceptable.

B. Verifiable FL.

During each training round of FL, the center may falsify the
aggregation results deliberately or unintentionally, which will
affect the model accuracy. Considering this problem, Xu et
al. [21] designed VrifyNet based homomorphic hash function
and double mask method, which enables participants to verify
whether the center aggregates correctly. Based on Lagrange
interpolation and homomorphic encryption, Fu et al. [22] also
designed a scheme named VFL to verify the correctness of the
aggregation results and can keep constant regardless of the
number of participants. Similarly, Zhang et al. [23] utilized
the Chinese Remainder Theorem and the Paillier encryption
to achieve secure aggregation, and used bilinear signature
technology to verify the aggregation correctness.

C. Decentralized FL.

In centralized FL, it is difficult to judge whether a center
is trustworthy and to find one trusted by all participants,
meanwhile, the communication ability between the center and
participants may become the system bottleneck. Therefore,
Weng et al. [42] proposed a privacy-preserving decentralized
FL framework named DeepChain to force the participants
to behave correctly based on Blockchain. Lyu et al. [24]
proposed FPPDL to achieve fair and privacy-preserving model
training under a decentralized framework, where the local
updates are protected by three-layer onion-style encryption.

Jeon et al. [25] proposed a privacy-preserving decentralized
aggregation protocol based on the novel group-based com-
munication pattern, which can provide a privacy guarantee
under an honest-but-curious model, meanwhile, control the
communication overhead during each training round.

Different from the above-mentioned schemes, PVD-FL can
balance privacy and efficiency, and can guarantee training
integrity under a decentralized architecture. Specifically, based
on EVCM, PVD-FL protects the global model and local up-
dates well during the whole model training process, which pro-
vides strong privacy preservation. Moreover, PVD-FL achieves
integrity verification of every model training step.

VIII. CONCLUSION

In this paper, we have proposed PVD-FL, a privacy-
preserving and verifiable decentralized FL framework, which
first guarantees both privacy-preservation and training in-
tegrity under a decentralized architecture. Security analysis
demonstrates that PVD-FL can achieve the confidentiality and
integrity of model training, and can resist various existing and
potential inference attacks. Meanwhile, experimental results
on real-world datasets show the lossless accuracy and practical
performance of PVD-FL. In addition, the poisoning attack will
also destroy the model integrity and should be verified, which
might be explored in future studies.

REFERENCES

[1] Y. Bengio, Y. LeCun, and G. E. Hinton, “Deep learning for AI,”
Commun. ACM, vol. 64, pp. 58–65, 2021.

[2] European Parliament and Council of the European Union. (2016,
April) General Data Protection Regulation. [Online]. Available:
https://eur-lex.europa.eu/eli/reg/2016/679/oj/

[3] California State Legislature. (2018, June) California Consumer Privacy
Act of 2018. [Online]. Available: https://oag.ca.gov/privacy/ccpa/

[4] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” CoRR, vol. abs/1610.05492, pp. 1–18, 2016.

[5] L. Lyu, H. Yu, J. Zhao, and Q. Yang, “Threats to federated learning,”
in Federated Learning, 2020, vol. 12500, pp. 3–16.

[6] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NeurIPS,
2019, pp. 14 747–14 756.

[7] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
CVPR, 2021, pp. 16 337–16 346.

[8] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting un-
intended feature leakage in collaborative learning,” in IEEE Symposium
on Security and Privacy, 2019, pp. 691–706.

[9] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in CCS, 2017, pp. 1175–1191.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

https://eur-lex.europa.eu/eli/reg/2016/679/oj/
https://oag.ca.gov/privacy/ccpa/

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

14

[10] X. Zhang, S. Ji, H. Wang, and T. Wang, “Private, yet practical, multiparty
deep learning,” in ICDCS, 2017, pp. 1442–1452.

[11] F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, “Achieve efficient
and privacy-preserving disease risk assessment over multi-outsourced
vertical datasets,” IEEE Trans. Dependable Secur. Comput., pp. 1–14,
2020.

[12] F. Wang, H. Zhu, R. Lu, Y. Zheng, and H. Li, “A privacy-preserving
and non-interactive federated learning scheme for regression training
with gradient descent,” Inf. Sci., vol. 552, pp. 183–200, 2021.

[13] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
CCS, 2016, pp. 308–318.

[14] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. S.
Quek, and H. V. Poor, “Federated learning with differential privacy:
Algorithms and performance analysis,” IEEE Trans. Inf. Forensics
Secur., vol. 15, pp. 3454–3469, 2020.

[15] S. Truex, L. Liu, K. H. Chow, M. E. Gursoy, and W. Wei, “LDP-Fed:
federated learning with local differential privacy,” in EuroSys, 2020, pp.
61–66.

[16] M. Kim, O. Günlü, and R. F. Schaefer, “Federated learning with local
differential privacy: Trade-offs between privacy, utility, and communi-
cation,” in ICASSP, 2021, pp. 2650–2654.

[17] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in IEEE Symposium on Security and
Privacy, 2017, pp. 19–38.

[18] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: scalable
provably-secure deep learning,” in DAC, 2018, pp. 1–6.

[19] N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascón, “QUO-
TIENT: two-party secure neural network training and prediction,” in
CCS, 2019, pp. 1231–1247.

[20] H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4pc
framework for privacy preserving machine learning,” in NDSS, 2020,
pp. 1–26.

[21] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and
verifiable federated learning,” IEEE Trans. Inf. Forensics Secur., vol. 15,
pp. 911–926, 2020.

[22] A. Fu, X. Zhang, N. Xiong, Y. Gao, and H. Wang, “VFL: A verifiable
federated learning with privacy-preserving for big data in industrial iot,”
IEEE Trans. Industr. Inform., pp. 1–11, 2020.

[23] X. Zhang, A. Fu, H. Wang, C. Zhou, and Z. Chen, “A privacy-preserving
and verifiable federated learning scheme,” in ICC, 2020, pp. 1–6.

[24] L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. S.
Ng, “Towards fair and privacy-preserving federated deep models,” IEEE
Trans. Parallel Distributed Syst., vol. 31, pp. 2524–2541, 2020.

[25] B. Jeon, S. M. Ferdous, M. R. Rahman, and A. Walid, “Privacy-
preserving decentralized aggregation for federated learning,” in INFO-
COM Workshops, 2021, pp. 1–6.

[26] L. Cui, Y. Qu, G. Xie, D. Zeng, R. Li, S. Shen, and S. Yu, “Security
and privacy-enhanced federated learning for anomaly detection in iot
infrastructures,” IEEE Trans. Ind. Informatics, pp. 1–10, 2021.

[27] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 307–328.

[28] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[30] M. A. Nielsen, Neural Networks and Deep Learning. Determination
press San Francisco, CA, 2015, vol. 25.

[31] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Tenth international work-
shop on frontiers in handwriting recognition. Suvisoft, 2006, pp. 1–6.

[32] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. A. Ghorbani,
“Achieving o (log3n) communication-efficient privacy-preserving range
query in fog-based iot,” IEEE Internet of Things J., vol. 7, no. 6, pp.
5220–5232, 2020.

[33] Y. Zheng, R. Lu, Y. Guan, J. Shao, and H. Zhu, “Efficient and privacy-
preserving similarity range query over encrypted time series data,” IEEE
Trans. Dependable Secur. Comput., pp. 1–15, 2021.

[34] Y. Guan, R. Lu, Y. Zheng, S. Zhang, J. Shao, and G. Wei, “Toward
privacy-preserving cybertwin-based spatiotemporal keyword query for
ITS in 6G era,” IEEE Internet Things J., vol. 8, pp. 16 243–16 255,
2021.

[35] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based
homomorphic encryption,” in Public Key Cryptography, vol. 7778, 2013,
pp. 1–13.

[36] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Des. Codes Cryptogr., vol. 71, pp. 57–81, 2014.

[37] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE Symposium
on Security and Privacy, 2017, pp. 3–18.

[38] Y. LeCun. (1998) The mnist database of handwritten digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[39] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp.
81–106, 1986.

[40] A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology
image analysis: A comprehensive tutorial with selected use cases,”
Journal of pathology informatics, vol. 7, pp. 1–19, 2016.

[41] H. Hofmann. (2000) Statlog (german credit data) dataset. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Cre
dit+Data)

[42] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secur. Comput., vol. 18, pp. 2438–
2455, 2021.

Jiaqi Zhao was born in China, in 1997. He re-
ceived the B.Eng. degree in information security
from Xidian University, Xi’an, Shaanxi, China, in
2020. He is currently pursuing the Ph.D. degree
in cyberspace security at Xidian University, Xi’an,
Shaanxi, China.

His research has been concerned with privacy-
preserving machine learning.

Hui Zhu (M’13–SM’19) received the B.Sc. degree
from Xidian University, Xi’an, Shaanxi, China, in
2003, the M.Sc. degree from Wuhan University,
Wuhan, Hubei, China, in 2005, and the Ph.D. degree
from from Xidian University, Xi’an, Shaanxi, China,
in 2009. He was a Research Fellow with the School
of Electrical and Electronics Engineering, Nanyang
Technological University, Singapore, in 2013.

Since 2016, he has been a Professor with the
School of Cyber Engineering, Xidian University. His
current research interests include applied cryptogra-

phy, data security, and privacy.

Fengwei Wang received his B.Sc. degree from
Xidian University in 2016, and Ph.D. degree from
Xidian University in 2021. In 2019, he was a visiting
scholar with the Faculty of Computer Science (FCS),
University of New Brunswick (UNB), Canada. Since
2021, he has been the lecturer in the School of Cyber
Engineering, Xidian University, China.

His research interests include the areas of applied
cryptography, big data security, and privacy protec-
tion.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

1556-6013 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2022.3176191, IEEE
Transactions on Information Forensics and Security

15

Rongxing Lu (S’09–M’11–SM’15–F’21) is an As-
sociate Professor at the Faculty of Computer Sci-
ence (FCS), University of New Brunswick (UNB),
Canada. His research interests include applied cryp-
tography, privacy enhancing technologies, and the
IoT-big data security and privacy. He was the Winner
of the 2016–2017 Excellence in Teaching Award
from the FCS, UNB. He was the recipient of nine
best (student) paper awards from some reputable
journals and conferences. Currently, he serves as
the Chair for the IEEE ComSoc Communications

and Information Security Technical Committee (CIS-TC), the Founding Co-
Chair for the IEEE TEMS Blockchain and Distributed Ledgers Technologies
Technical Committee (BDLT-TC), and the Chair of Mastercard IoT Research.

Zhe Liu (SM’16) received the B.S. and M.S. de-
grees from Shandong University in 2008 and 2011,
respectively, and the Ph.D. degree from University of
Luxembourg in 2015. He is a Professor with the Col-
lege of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, China.
His research interests include security, privacy, and
cryptography solutions for the Internet of Things.

Prof. Liu was a recipient of the prestigious FNR
Awards-Outstanding Ph.D. Thesis Award in 2016,
ACM CHINA SIGSAC Rising Star Award in 2017

as well as DAMO Academy Young Fellow in 2019. He served as general
co-chair of CHES 2020 and CHES 2021.

Hui Li (M’10) Received his B.Sc. degree from
Fudan University in 1990, M.Sc. and Ph.D. degrees
from Xidian University in 1993 and 1998, respec-
tively.

Since 2005, he has been the professor in the
school of Telecommunication Engineering, Xidian
University, China. His research interests are in the
areas of cryptography, wireless network security,
information theory and network coding.

Dr. Li served as TPC co-chair of ISPEC 2009
and IAS 2009, general co-chair of E-Forensic 2010,

ProvSec 2011 and ISC 2011, honorary chair of NSS 2014, ASIACCS 2016.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:54:44 UTC from IEEE Xplore. Restrictions apply.

